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Abstract
A Fourier transform in a multimode system is studied, using the Bargmann
representation. The growth of a Bargmann function is shown to be related to
the second-order correlation of the corresponding state. Both the total growth
and the total second-order correlation remain unchanged under the Fourier
transform. Examples with coherent states, squeezed states and Mittag–Leffler
states are discussed.

PACS numbers: 03.65.Ca, 03.65.−w

1. Introduction

The study of various aspects of unitary transformations in multimode systems is very
important. In this paper we consider a d-mode system with creation and annihilation operators(
a
†
0, a0

)
, . . . ,

(
a
†
d−1, ad−1

)
. We study a unitary transformation which transforms them into(

b
†
0, b0

)
, . . . ,

(
b
†
d−1, bd−1

)
, where the {bM} are related to {aM} through a Fourier transform

and the
{
b
†
M

}
are also related to

{
a
†
M

}
through a Fourier transform. This Fourier transform is

a non-local transformation that involves all modes and is very different from a local Fourier
transform on a particular mode, which relates the position and momentum states in this mode.

There exists extensive literature on applied aspects of devices that perform this Fourier
transform [1–6] and in this paper we study theoretical aspects using the theory of analytic
functions of many complex variables. In section 2 we present the basic formalism of d
harmonic oscillators and define the notation. In section 3 we define Bargmann functions
[7] for multimode systems. In section 4 we discuss the growth of Bargmann functions of
one complex variable and in section 5 the growth of Bargmann functions of many complex
variables. We explain that the mathematical concept of growth is related to the physical
quantity of second-order correlation.

In section 6 we discuss the Fourier transform using the language of Bargmann functions.
We explain that these transformations do not change the total growth of Bargmann functions
and that they leave invariant the total second-order correlation of a state. The usual properties
of Fourier transforms are expressed in the present context in section 7.
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These general ideas are discussed explicitly for the examples of coherent states, squeezed
states and Mittag–Leffler states. In section 8 we consider coherent states and show that the
transformed states are also coherent states. In section 9 we consider squeezed states. For
factorizable squeezed states, the transformed states are entangled.

In section 10 we consider an example which involves Mittag–Leffler functions. This is
important for theoretical reasons because the corresponding Bargmann function can have any
given growth. We conclude in section 11 with a discussion of our results.

2. d harmonic oscillators

We consider a system comprised of d harmonic oscillators with Hilbert space H = H⊗· · ·⊗H.
We also consider the creation and annihilation operators

a
†
M = 1 ⊗ · · · ⊗ a† ⊗ · · · ⊗ 1

aM = 1 ⊗ · · · ⊗ a ⊗ · · · ⊗ 1 (1)[
aM, a

†
N

] = δMN1,

where M belongs in Zd (the integers modulo d). The displacement operators are given by

DM(z) = exp
(
za

†
M − z∗aM

)
, (2)

where z is a complex number. Coherent states are defined as

|z0, . . . , zd−1〉 = [D0(z0) . . . Dd−1(zd−1)] |0, . . . , 0〉

= exp

(
−1

2

∞∑
M=0

|zM |2
) ∑ z

N0
0 . . . z

Nd−1
d−1

(N0! . . . Nd−1!)1/2
|N0, . . . , Nd−1〉, (3)

where |0, . . . , 0〉 is the d-mode vacuum state. In the sum (and also in the sums in
equations (4)–(7) below) the integer variables N0, . . . , Nd−1 take values from 0 to ∞.

We consider an arbitrary state

|f 〉 =
∑

F(N0, . . . , Nd−1)|N0, . . . , Nd−1〉;
∑

|F(N0, . . . , Nd−1)|2 = 1. (4)

We use the notation

|f ∗〉 =
∑

[F(N0, . . . , Nd−1)]
∗|N0, . . . , Nd−1〉,

(5)
〈f ∗| =

∑
F(N0, . . . , Nd−1)〈N0, . . . , Nd−1|.

For later use we define the average number of photons and the second-order correlation for
the mode M:

〈NM〉 =
∑

NM |F(N0, . . . , Nd−1)|2,
(6)

g
(2)
M =

∑
N2

M |F(N0, . . . , Nd−1)|2 − 〈NM〉
〈NM〉2

.

We also define the total average number of photons and the total second-order correlation

〈NT 〉 =
∑

NT |F(N0, . . . , Nd−1)|2; NT = N0 + · · · + Nd−1,
(7)

g
(2)
T =

∑
N2

T |F0(N0, . . . , Nd−1)|2 − 〈NT 〉
〈NT 〉2

.
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3. Bargmann representation for d harmonic oscillators

The Bargmann representation for the state of equation (4) is given by

f ({zM}) ≡ f (z0, . . . , zd−1) = exp

(
1

2

∞∑
M=0

|zM |2
)

〈f ∗|z0, . . . , zd−1〉

=
∑

F(N0, . . . , Nd−1)
z
N0
0 . . . z

Nd−1
d−1

(N0! . . . Nd−1!)1/2
, (8)

where in the sum the variables N0, . . . , Nd−1 take values from 0 to ∞. The function
f (z0, . . . , zd−1) is an analytic function of z0, . . . , zd−1.

Equation (8) shows that if (w0, . . . , wd−1) is a zero of the Bargmann function f ({zM}),
i.e., if

f (w0, . . . , wd−1) = 0, (9)

then the coherent state |w0, . . . , wd−1〉 is orthogonal to the state |f ∗〉.
The scalar product of two states |f 〉 and |g〉 is given by

〈f |g〉 =
∫

[f ({zM})]∗g({zM}) dµ({zM}),
(10)

dµ({zM}) = exp

(
−

∞∑
M=0

|zM |2
)

d2z0

π
. . .

d2zd−1

π
.

In the Bargmann representation the creation and annihilation operators are given by

a
†
M → zM, aM → ∂zM

. (11)

4. Growth of Bargmann functions of one variable

The growth of analytic functions of one complex variable and its relation to the density of
zeros of this function have been discussed extensively in the mathematical literature [8]. These
ideas have been used in the context of Bargmann functions in quantum mechanics in [9].

Let f (z) be an entire function of one complex variable z and let M(R) be the maximum
value of |f (z)| on the circle |z| = R. The growth of f (z) is characterized by the order ρ and
the type σ which are defined as

ρ = lim
R→∞

sup
ln ln M(R)

ln R
, σ = lim

R→∞
sup

ln M(R)

Rρ
. (12)

In a simple language, this means that as |z| → ∞ the function grows like

|f (z)| ≈ exp (σ |z|ρ) . (13)

For Bargmann functions of one variable, convergence of the scalar product leads to the result
[9] that either ρ < 2 (in which case σ can take any value) or ρ = 2 and σ < 1/2.

The growth of an entire function is related to the rate of decrease of its Taylor coefficients.
If

f (z) =
∞∑

N=0

cNzN (14)

then the order of the growth is given by

ρ = lim
N→∞

N ln N

−ln |cN | . (15)
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We have seen in equation (8) that the Bargmann function of the state

|f 〉 =
∞∑

N=0

F(N)|N〉,
∞∑

N=0

|F(N)|2 = 1 (16)

is

f (z) =
∞∑

N=0

F(N)zN

(N !)1/2
. (17)

Therefore cN = F(N)(N !)−1/2 and taking into account Stirling’s formula for the asymptotic
behaviour of N !, we conclude that at large N

|F(N)|2 ≈ N−λN , λ = 2

ρ
− 1. (18)

4.1. Growth and bunching

Here we make a connection between the mathematical concept of growth and the second-order
correlation g(2) which is a quantity of physical interest.

The second-order correlation for the state of equation (16) is

g(2) =
∑

N2|F(N)|2 − 〈N〉
〈N〉2

, 〈N〉 =
∞∑

N=0

N |F(N)|2. (19)

When g(2) < 1 the state shows antibunching (i.e., regular arrival of photons in a detector). In
the opposite limit g(2) 	 1 the state shows strong bunching (i.e., irregular arrival of photons
in a detector).

Comparison of equations (18), (19) shows that there is a link between the growth of a
Bargmann function and the corresponding second-order correlation g(2). We stress that it is a
‘weak link’ because equation (18) refers to very large N, while equation (19) is, in practice,
based on smaller N. Nevertheless, given two states with the same average number of photons
〈N〉, we expect the one with the larger order to have larger g(2). Therefore an ‘approximate
statement’ is that Bargmann functions with small (close to zero) or large (close to 2) order
show small bunching (small g(2)) or strong bunching (large g(2)), correspondingly. Numerical
results presented later will support this statement.

There is a well-known connection between the growth of an entire function and the density
of its zeros. This has been used in [9] to derive results about the completeness of sequences
of coherent states.

5. Growth of Bargmann functions of many variables

There is an enormous amount of work on the growth of analytic functions of one complex
variable [8], but there is less work on the growth of analytic functions of several complex
variables (for a summary, see [10]). There are various definitions for various purposes and in
the present context we are interested in the convergence of the integral in the scalar product of
equation (10). For this reason, we consider the ‘total growth’ (i.e., with respect to all variables)
and we use the norm

(∑ |zM |2)1/2
. Let M(R) be the maximum value of |f ({zM})| on the

sphere ( ∞∑
M=0

|zM |2
)1/2

= R. (20)
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The order ρT and the type σT of the total growth of f ({zM}) are defined as in equation (12).
This means that as

∑ |zM |2 → ∞ the function grows like

|f ({zM})| ≈ exp


σT

( ∞∑
M=0

|zM |2
)ρT /2


 . (21)

It is easily seen from equation (10) that in order to have convergence of the integral in the
scalar product, the total growth of Bargmann functions should be either ρT < 2 (in which case
σT can take any value) or ρT = 2 and σT < 1/2.

5.1. Factorizable functions

We consider the factorizable states

|f 〉 = |f0〉 ⊗ · · · ⊗ |fd−1〉 =
∑

F0(N0) . . . Fd−1(Nd−1)|N0, . . . , Nd−1〉, (22)

where, in the summation, the variables N0, . . . , Nd−1 take values from 0 to ∞. The
corresponding Bargmann functions f ({zM}) are factorizable:

f ({zM}) = f0(z0) . . . fd−1(zd−1). (23)

We want to relate the growths of the various factors fM(zM) with the total growth of the
function f ({zM}). Let (ρM, σM) be the order and type of the growth of fM(zM) (for all M).
As R → ∞ the variables |zM | = λMR → ∞, where λM are coefficients that depend on the
direction which we follow as we go towards infinity. Then the function f ({zM}) grows like

|f ({zM})| ≈ exp

( ∞∑
M=0

σM |zM |ρM

)
≈ exp

( ∞∑
M=0

τMRρM

)
, τM = σMλ

ρM

M . (24)

This shows that the order of the total growth of f ({zM}) is the maximum of ρM :

ρT = max(ρ0, . . . , ρd−1). (25)

If only one of the ρM (e.g., the ρi) is equal to the maximum value, then the corresponding type
σi is equal to the type of the total growth of f ({zM}):

σT = σi. (26)

If, however, two or more of the ρM (e.g., the ρi = ρj = · · ·) are equal to the maximum value,
then the sum of the corresponding types is greater than or equal to the type of the total growth
of f ({zM}):

σT � σi + σj + · · · . (27)

We discuss this in the example with coherent states later.
We next make a connection between the total growth of factorizable functions, and the

total second-order correlation, which is here given by

g
(2)
T =

∑
(N0 + · · · + Nd−1)

2|F0(N0) . . . Fd−1(Nd−1)|2 − 〈NT 〉
〈NT 〉2

(28)
〈NT 〉 =

(∑
N0|F(N0)|2

)
+ · · · +

(∑
Nd−1|F(Nd−1)|2

)
,

where, in the summation, the variables N0, . . . , Nd−1 take values from 0 to ∞. Using
equation (18) we find that for large NM

|F0(N0) . . . Fd−1(Nd−1)|2 ≈
∏

M∈Zd

N
−λMNM

M �


 ∏

M∈Zd

N
NM

M




−λT

(29)
λM = 2

ρM

− 1, λT = 2

ρT

− 1 = min(λ0, . . . , λd−1).
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We then use the inequality

∏
M∈Zd

N
NM

M �
(

NT

d

)NT

, NT = N0 + · · · + Nd−1, (30)

to show that for large NM

|F0(N0) . . . Fd−1(Nd−1)|2 ≈
(

NT

d

)−λT NT

. (31)

This is similar to equation (18) for the one variable case. We can now make a connection
between the order ρT of the total growth of a factorizable Bargmann function and the
corresponding second-order correlation g

(2)
T . Bargmann functions with small or large order

show small bunching or strong bunching, correspondingly.

6. Unitary transformations

We consider the unitary operator [1]

U = exp

[
i
∑
M,K

a
†
M�MKaK

]
, M,K ∈ Zd, (32)

where � is a d × d Hermitian matrix. It is known [11] that

bM ≡ UaMU † =
∑
K∈Zd

GMKaK,

(33)
b
†
M ≡ Ua

†
MU † =

∑
K∈Zd

G∗
MKa

†
K,

[
bM, b

†
N

] = δMN1,

where

G = exp(−i�), GG† = 1. (34)

The unitary transformations U leave invariant the vacuum state

U |0, . . . , 0〉 = |0, . . . , 0〉. (35)

They also preserve the total number of photons in a state:∑
M∈Zd

a
†
MaM =

∑
M∈Zd

b
†
MbM. (36)

We note that symplectic Sp(2d,R) transformations [12] are given by

bM ≡ V aMV † =
∑
K∈Zd

(
GMKaK + JMKa

†
K

)
b
†
M ≡ V a

†
MV † =

∑
K∈Zd

(
G∗

MKa
†
K + J ∗

MKaK

)
(37)

[
bM, b

†
N

] = δMN1,

where∑
K∈Zd

(GMKG∗
NK − JMKJ ∗

NK) = δMN

∑
K∈Zd

(GMKJNK − JMKGNK) = 0.

The transformations of equation (33) form a subgroup of Sp(2d,R) (with JMK = 0).
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In the Bargmann representation equation (33) is written as

∂zM
=

∑
K∈Zd

GMK∂zK
, zM =

∑
K∈Zd

G∗
MKzK. (39)

We next show that for a coherent state

U |z0, . . . , zd−1〉 = |ζ0, . . . , ζd−1〉, ζM =
∑
K∈Zd

zKG∗
KM. (40)

In general GKM is not equal to GMK and for this reason we use different notation for the
variables zM and ζM . In the special case of symmetric matrix G, these two variables are the
same.

It is easily seen that∑
M∈Zd

|ζM |2 =
∑
K∈Zd

|zK |2. (41)

Using this and equation (40) we show that if f ({zM}) is the Bargmann function of a state |f 〉
then the f ({ζM}) ≡ ϕ({zM}) is the Bargmann function of the state U |f 〉. We express this as

Uf ({zM}) = f ({ζM}) ≡ ϕ({zM}), ζM =
∑
K∈Zd

zKG∗
KM. (42)

The Jacobian of the transformation is equal to 1:

∂({zM, z∗
M})

∂({ζM, ζ ∗
M}) = |det G|2 = 1. (43)

This, together with equation (41), shows that

dµ({zM}) = dµ({ζM}). (44)

We note that the transformations U do not change the total second-order correlation g
(2)
T

defined in equation (7). This is easily seen using equation (36).
With regard to the growth, equation (41) implies that the function M(R) is the same for

both Bargmann functions f ({zM}) and ϕ({zM}). Therefore the unitary transformations U of
equation (33) do not change the total growth of the Bargmann function f ({zM}). We stress that
U is a special case of unitary transformations, where annihilation operators are transformed
into a combination of annihilation operators, and creation operators are transformed into a
combination of creation operators. General unitary transformations (such as the more general
transformations V of equation (37)) do change the total growth of Bargmann functions.

6.1. Fourier transform

An important special case of these transformations is for

G = F, � = i lnF, (45)

where F is the d × d Fourier matrix

FMK = 1√
d

ωMK, ω = exp

(
i
2π

d

)
. (46)

In this case, the unitary operator of equation (32) is given by

UF = exp

[
−

∑
M,K

a
†
M(lnF)MKaK

]
, U 4

F = 1, M,K ∈ Zd, (47)
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and equation (33) reduces to

UF aMU
†
F = d−1/2

∑
K∈Zd

ωMKaK, UF a
†
MU

†
F = d−1/2

∑
K∈Zd

ω−MKa
†
K. (48)

In the Bargmann representation this is expressed as

∂ζM
= d−1/2

∑
K∈Zd

ωMK∂zK
, ζM = d−1/2

∑
K∈Zd

ω−MKzK. (49)

If f ({zM}) is the Bargmann function of a state |f 〉 then the f ({ζM}) ≡ ϕ({zM}) is the
Bargmann function of the state UF |f 〉:

UF f ({zM}) = f ({ζM}) ≡ ϕ({zM}), ζM = d−1/2
∑
K∈Zd

ω−MKzK. (50)

We note that in this paper we use the logarithm of the Fourier matrix F of equation (46)
to construct the operator UF of equation (47) which leads to the transformations of
equation (48), among the d oscillators. Recently [13] has studied fractional Fourier transforms
in the context of finite systems. It interesting to use the logarithms of these matrices to
generalize the operator UF and the transformations of equation (48). We do not pursue this
direction in the present paper.

7. Properties of the Fourier transform

The operator UF has the ‘standard’ Fourier transform properties and below we discuss the
most important ones. The property U 4

F = 1 gives

U 4
F f ({zM}) = f ({zM}). (51)

The U 2
F is a parity operator in the sense that

U 2
F f ({zM}) = f ({z−M}). (52)

Here the indices are integers modulo d, i.e., f ({z−M}) = f ({zd−M}).
We next use equation (50) to show that

UF f ({zN − zN+M}) = f ({(1 − ωKM)ζK}). (53)

This might be viewed as the analogue of the property that gives the Fourier transform of the
derivative (discrete in the present context) of a function.

The convolution property in the present context is given by

UF f ({zMuM}) = f ({(ζ ∗ v)M}) (54)

where

ζM = 1√
d

∑
K∈Zd

ω−MKzK; vM = 1√
d

∑
K∈Zd

ω−MKuK

(ζ ∗ v)M ≡
∑
K∈Zd

ζM−KvK.

(55)
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8. Coherent states

As an example we consider the coherent state |w0, . . . , wd−1〉 which is represented with the
Bargmann function

f ({zM}) = exp


 ∑

M∈Zd

wMzM − 1

2

∑
M∈Zd

|wM |2

 . (56)

This function is factorizable

f ({zM}) =
∏

M∈Zd

fM(zM) fM(zM) = exp

[
wMzM − 1

2
|wM |2

]
. (57)

The factor fM(zM) has growth with order ρ = 1 and σ = |wM |. According to our general
result earlier, the total growth has order and type

ρT = 1, σT �
∑

M∈Zd

|wM |. (58)

We confirm this with an explicit calculation. We consider the maximum value of |f ({zM})|
on the sphere

(∑ |zM |2)1/2 = R. We first note that

|f ({zM})| � exp


 ∑

M∈Zd

|wMzM | +
1

2

∑
M∈Zd

|wM |2

 . (59)

We use the simpler notation rM = |zM | and we need to find the maximum of

g(r0, . . . , rd−2) = |w0|r0 + · · · + |wd−2|rd−2 + |wd−1|
[
R2 − r2

0 − · · · − r2
d−2

]1/2
. (60)

At the maximum

∂g({rM})
∂rM

= 0, (61)

and we get a system of d − 1 equations with d − 1 unknowns which leads to the result

rM = |wM |R[∑ |wM |2]1/2 . (62)

We can check that the second derivatives are negative. Therefore the maximum value of
g(r0, . . . , rd−2) is R

[ ∑ |wM |2]1/2
and the total growth of the Bargmann function for coherent

states (given in equation (56)) is

ρT = 1, σT =

 ∑

M∈Zd

|wM |2



1/2

. (63)

These results are consistent with those in equation (58) which are based on general arguments.

8.1. Fourier transform of coherent states

We consider the Fourier transform of the coherent state |w0, . . . , wd−1〉. Its Bargmann function
has been given in equation (56) and its Fourier transform is given by
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UF exp


 ∑

M∈Zd

wMzM − 1

2

∑
M∈Zd

|wM |2

 = exp


 ∑

M∈Zd

wMζM − 1

2

∑
M∈Zd

|wM |2



= exp


 ∑

M∈Zd

uMzM − 1

2

∑
M∈Zd

|uM |2

 (64)

uM = d−1/2
∑
K∈Zd

wKωKM.

We note that both the original state of equation (56) and the transformed state of equation (64)
are factorizable states.

We have seen in equation (63) that the total growth of the Bargmann function of
equation (56) describing coherent states is ρT = 1 and σT = [∑ |wM |2]1/2

. As we explained
earlier, the transformation UF does not change the growth of the Bargmann function of a state.
We confirm this here, because the growth of the transformed state of equation (64) is ρ ′

T = 1

and σ ′
T = [∑ |uM |2]1/2

and it is easily seen that ρ ′
T = ρT and σ ′

T = σT .

9. Squeezed states

9.1. One-mode squeezed states

One-mode squeezed states are defined as

|w0; r, θ〉 = S(r, θ)|w0〉, (65)

where S(r, θ) is the squeezing operator:

S(r, θ) = exp
[− 1

4 r e−iθ (a†)2 + 1
4 r eiθa2

]
. (66)

The Bargmann function of this state is [9]

f (z0) = L exp
[
−α

2
z2

0 + βz0

]
(67)

where

α = tanh
( r

2

)
e−iθ , β = w0(1 − |α|2)1/2

(68)

L = (1 − |α|2)1/4 exp

[
1

2
α∗w2

0 − 1

2
|w0|2

]
.

It is easily seen that the growth of f (z0) has order ρ = 2 and type σ = |α|/2.
We consider the simple case of arg(w0) = 0 and θ = 0. In this case the average number

of photons and the second-order correlation are given by

〈N〉 = w2
0

[
cosh

( r

2

)
− sinh

( r

2

)]2
+

[
sinh

( r

2

)]2

(69)

g(2) = 1 +
e−r − 1

〈N〉 +
1 + sinh r

〈N〉2

[
sinh

( r

2

)]2
.

In figure 1 we plot g(2) against r for 〈N〉 = 10.
Squeezed states have been studied extensively in the literature because they have small

values (less than 1) of the second-order correlation g(2) (antibunching). We stress, however,
that this is the case only for a small window of the squeezing parameters r, θ . As seen in
figure 1, there is a large window of these parameters (r > 2.2) where the g(2) takes very large
values. And this is consistent with our ‘approximate statement’ made earlier, that states of
high order, such as the squeezed states, will have large second-order correlations.
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Figure 1. g(2) against r for the squeezed state of equation (65), with 〈N〉 = 10, θ = 0 and
arg(w0) = 0.

9.2. Multi-mode squeezed states

For a d-mode squeezed state the Bargmann function is

f ({zK}) = N exp


−1

2

∑
M,N∈Zd

AMNzMzN +
∑

M∈Zd

βMzM




(70)
AMN = αMδMN, N = L0 . . .Ld−1.

This is a factorizable function and, according to our general results earlier, the total growth of
this function has order ρT = 2 and type σT �

(∑ |α|M
)/

2.
Its Fourier transform is given by

UF f ({zM}) = N exp


−1

2

∑
M,N∈Zd

AMNζMζN +
∑

M∈Zd

βMζM




= N exp


−1

2

∑
M,N∈Zd

ÃMNzMzN +
∑

M∈Zd

β̃MzM


 , (71)

where

ÃMN = d−1
∑
K∈Zd

αKω[−K(M + N)], β̃M = d−1/2
∑
K∈Zd

βKω(−KM). (72)

We note that in the original state of equation (70) the matrix AMN is diagonal and therefore
this state is factorizable. In its Fourier transform of equation (71), the matrix ÃMN is not
diagonal and therefore this state is entangled.

The transformation UF does not change the growth, and therefore the total growth of
UF f ({zM}) has order ρT = 2 and type σT �

(∑ |α|M
)/

2.

10. Mittag–Leffler states

The order ρ can take all values between 0 and 2. We show this explicitly by giving an example
of a state which has Bargmann function with a given order ρ and given type σ .
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The case of one mode has been discussed in [9]. We consider the state

|ρ, σ 〉 =
∞∑

N=0

F(N)|N〉, F (N) = K
σN/ρ(N !)1/2

�
(

N
ρ

+ 1
) , (73)

where K is a normalization constant:

K =

 ∞∑

N=0

σ 2N/ρN ![
�

(
N
ρ

+ 1
)]2




− 1
2

. (74)

The corresponding Bargmann function is given in terms of the Mittag–Leffler function
[14, p 206]

f (z) = KE1/ρ(σ
1/ρz), (75)

and it has growth with order ρ and type σ .
We consider the d-mode state

|s〉 = |ρ0, σ0〉 ⊗ · · · ⊗ |ρd−1, σd−1〉, (76)

which is represented with the Bargmann function

f ({zM}) = [
K0E1/ρ0

(
σ

1/ρ0
0 z0

)]
. . .

[
Kd−1E1/ρd−1

(
σ

1/ρd−1
d−1 zd−1

)]
. (77)

This is a factorizable function and according to our general result in equation (25) the total
growth has order ρT = max(ρ0, . . . , ρd−1). The type is given by the results of equations (26)
and (27).

The Fourier transform is given by

UF f ({zM}) = [
K0E1/ρ0

(
σ

1/ρ0
0 ζ0

)]
. . .

[
Kd−1E1/ρd−1

(
σ

1/ρd−1
d−1 ζd−1

)]
, (78)

where the ζM are related to the zM through the Fourier transform of equation (50). The total
growth of UF f ({zM}) is the same as the total growth of f ({zM}).

10.1. Numerical results

We consider the case d = 2 with σ0 = 0.7 and σ1 = 0.9, i.e., the state

|s〉 = |ρ0, 0.7〉 ⊗ |ρ1, 0.9〉. (79)

We have studied numerically the properties of the states |s〉 and UF |s〉.
Each of the two Hilbert spaces has been truncated at the number state |N = 11〉. To ensure

that this is a good approximation, we continuously check that, for all states |u〉 involved in our
calculations, their projections |u〉tr into the truncated Hilbert space satisfy the

tr〈u|u〉tr > 0.9. (80)

In other words, only a very small part of these states is outside the truncated Hilbert space.
The fact that the average number of photons in these states (shown in figures 2 and 5) is
much smaller than 11 also indicates that the approximation is good. We note here that as ρ

increases a larger truncated Hilbert space is required for the same accuracy (and this is also
consistent with the statement that g(2) is large at large ρ). For this reason, we present results for
ρ < 1.5.

We first consider the state |s〉 and in figure 2 we plot the average numbers of photons 〈N0〉
and 〈N1〉 as functions of ρ0 and ρ1, correspondingly. In figure 3 we present the second-order
correlations

g
(2)
0 =

〈
N2

0

〉 − 〈N0〉
〈N0〉2

, g
(2)
1 =

〈
N2

1

〉 − 〈N1〉
〈N1〉2

(81)
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Figure 2. The average numbers of photons 〈N0〉 (curve a) and 〈N1〉 (curve b) for the state |s〉 of
equation (79) as functions of the orders ρ0 and ρ1, correspondingly.
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Figure 3. The second-order correlations g
(2)
0 (curve a) and g

(2)
1 (curve b) for the state |s〉 of

equation (79) as functions of the orders ρ0 and ρ1, correspondingly.

as a function of ρ0 and ρ1, correspondingly. The state |s〉 is factorizable and therefore the
results for the zero mode do not depend on ρ1, and the results for the first mode do not depend
on ρ0.

We have also calculated the total number of photons 〈NT 〉 and the total second-order
correlation g

(2)
T of equation (28), as functions of ρ0 and ρ1, for the state |s〉. The intersection

of the two-dimensional surface 〈NT 〉 with the plane at 〈NT 〉 = 0.62 produced a curve on the
plane ρ0 − ρ1. We considered the pairs (ρ0, ρ1) which belong to this curve and we calculated
the corresponding g

(2)
T . We then plotted in figure 4 the g

(2)
T as a function of the order of the

total growth ρT = max(ρ0, ρ1). There is a multivaluedness in the results, which however does
not affect our conclusions. We repeated the same calculation for 〈NT 〉 = 1.46. The results
support our earlier statement that if we compare states with the same total number of photons,
the one with larger order of total growth, will also have larger total second-order correlation.
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Figure 4. The total second-order correlations g
(2)
T for the state |s〉 of equation (79) as a function

of the order ρT for a total number of photons 〈NT 〉 = 0.62 and 〈NT 〉 = 1.46.
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Figure 5. The average numbers of photons 〈N0〉 for the state UF |s〉 of equation (83) as a function
of the orders ρ0 and ρ1.

In figures 5 and 6 we consider the transformed state UF |s〉 and plot the average number of
photons in the zero mode 〈N0〉 and the corresponding second-order correlation g

(2)
0 . The state

UF |s〉 is entangled and the results depend on both ρ0 and ρ1. In order to do the calculations,
we use the formulae

Eα(z) =
∞∑

k=0

zk

�(αk + 1)
(82)

and find that

UF |s〉 =
∑

g(M,N)|M,N〉 (83)
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Figure 6. The second-order correlations g
(2)
0 for the state UF |s〉 of equation (83) as a function of

the orders ρ0 and ρ1.
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Figure 7. The entropic quantity I of equation (85) for the state UF |s〉 as a function of the orders
ρ0 and ρ1.

where

g(M,N) = K0K1(N !M!)1/2
∑
K,�

(−1)N−K
[
2−1/2σ

1/ρ0
0

]�[
2−1/2σ

1/ρ1
1

]M+N−�

�
(

�
ρ0

+ 1
)
�

(
M+N−�

ρ1
+ 1

)
×

(
�

K

) (
M + N − �

N − K

)
. (84)

Here the integers M,N take all non-negative values.
As a measure of entanglement we present in figure 7 the quantity

I = S(R0) + S(R1) − S(R01), (85)

where S(R) is the entropy of the density matrix R,

S(R) = −TrR lnR (86)
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and

R01 = UF |s〉〈s|U †
F , R0 = Tr1R01, R1 = Tr0R01. (87)

We have used natural logarithms and therefore the results are in nats.

11. Discussion

The Fourier transform of equation (48) is of great interest in quantum optics and for this
reason it has been studied extensively in the literature. In this paper we have concentrated
on theoretical aspects of this transform using the Bargmann representation which exploits the
powerful formalism of analytic functions. Equation (50) gives the Fourier transform on an
arbitrary state, in the Bargmann language.

We have discussed the growth of Bargmann functions and explained that it is related to
the second-order correlation. We have shown that the Fourier transform and also the more
general unitary transformations of equation (33) do not change the total growth of Bargmann
functions. Two properties of the Fourier transform have been given in equations (53) and (54).

The Fourier transform of a coherent state is another coherent state. The Fourier
transform of the factorizable squeezed state of equation (70) is the entangled squeezed state of
equation (71).

The Mittag–Leffler states of equation (76) demonstrate that we can have states of any
given growth, provided that ρT < 2 (in which case σT can have any value), or ρT = 2 and
σT < 1/2. Physical quantities for these states have been presented in figures 2–4, and for the
Fourier transform of these states in figures 5–7.

In summary, the Fourier transform of equation (48) has been studied extensively in the
literature. This work is complemented in the present paper by studying this transform from
the point of view of the theory of analytic functions of many complex variables.
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